

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 15 (2004) 3783-3789

Tetrahedron: Asymmetry

D-Ribofuranosylenamine: a versatile starting material for preparing azasugar thioglycosides and building blocks for thioureylene-di-nucleosides

José Fuentes,* José M. Illangua, Francisco J. Sayago, Manuel Angulo, Consolación Gasch and M. Ángeles Pradera

Departamento de Química Orgánica, Facultad de Química y Servicio de RMN, Univ. de Sevilla, Aptdo 553, E-41071 Sevilla, Spain Received 17 September 2004; accepted 11 October 2004

Abstract—Six-membered azasugar thioglycosides (piperidines) are prepared from a β -D-ribofuranosylenamine, with a 1,5-anhydro derivative being the key intermediate. The α -anomer of the same D-ribofuranosylenamine is transformed into a 5-deoxy-5-isothiocyanato derivative, useful for preparing D-ribosylamino derivatives with a non-ionic thiourea bridge, isosteric of the phosphate bridge. The prepared thioureas are potential building blocks for the synthesis of thioureylene-di-nucleosides. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few decades, azasugars, due to their biological interest have become an important subject of research in the field of organic and pharmaceutical chemistry. Thioglycosides, that is 1-thio analogues of glycosides, have been widely used as glycosyl donors in glycosylation reactions, to prepare oligosaccharides. Thioglycosides have also been used to prepare monosaccharide derivatives *O*-protected in every position except the anomeric hydroxyl group, as thioalkyl and thiophenyl groups can be selectively removed from per-*O*-protected sugars with different *O*-protecting groups. From a biological point of view, the thioglycosides have been tested as antithrombotic agents.

Five-⁹ and seven-membered¹⁰ iminocyclitols have been prepared from hexopyranosylenamines; the key chiral intermediate of these syntheses being anhydroazasugar derivatives. The same type of chiral intermediate has been used to prepare thiofuranosides of 5-aminosugars¹¹ and ethylthioglycosides of pyrrolizine-derived azasugars.¹²

At the same time, nucleosides and nucleotides are compounds of pharmaceutical interest, due to the successful use of the former in the treatment of many infectious diseases, ¹³ in particular for the therapy of AIDS, ¹⁴ and the therapeutic activity of the latter as inhibitors of protein biosynthesis. ¹⁵ The synthesis of analogues of natural oligonucleotides (antisense oligonucleotides) has been a growing research topic over the last few years, and several nucleotide analogues changing the negatively charged phosphodiester linkage by non-ionic isosteric spacers, ¹⁶ such as guanidino, ¹⁷ (S)-methylthioureido, ¹⁸ amide, ¹⁹ carbamate ²⁰ and phosphoramidate ²¹ have been synthetized. We have reported the preparation of thioureylene-di-C-nucleosides (tetrofuranosides) by reaction of aminonucleosides and isothiocyanato erythrosides. ²²

In an earlier paper²³ we have described the preparation of N-2,2-diethoxycarbonylvinyl-2,3-O-isopropylidene- β 1 and α -ribofuranosylamines 9 from D-ribosylamine, and recently we have communicated²⁴ our preliminary results on the preparation of azasugar thioglycosides. Herein we report that the β -anomer 1 is a suitable starting material for preparing alkyl and aryl thioglycosides of six-membered iminocyclitols, and α -anomer 9 can be easily transformed, through the preparation of a 5-isothiocyanato derivative 13 into the thiourea 16 with C-nucleoside and glycosylenamine moieties. The

^{*}Corresponding author. Tel.: +34 954557150; fax: +34 954624960; e-mail: jfuentes@us.es

enamino group is potentially transformable into different heterocycles. $^{25-27}$

2. Results and discussion

The reaction of 2,3-O-isopropylidene- β -D-ribofurano-sylamine p-toluenesulfonate²⁸ with diethyl ethoxymeth-ylenemalonate gives²³ the separable mixture of N-2,2-diethoxycarbonylvinyl-2,3-O-isopropylidene- β 1 and α -D-ribofuranosylamines 9. Treatment of 1 with mesyl chloride in pyridine, under argon for 15h gives the 5-O-mesyl derivative 2 in 70% yield (Scheme 1). Longer treatment (72h) and more-concentrated solution (see Experimental) produce the substitution of the mesyloxy group by chloro, giving 5-chloro-5-deoxy- β -D-ribofuranosylenamine 3. The chemical shifts for the resonances of H-5a and H-5b in 2 and 3 (Table 1) were indicative of the introduction of the mesyl group and the chlorine atom, respectively.

Intramolecular substitution, induced by sodium methoxide in DMF, 10 of the mesyloxy group in **2**, or of the chloro in **3**, gives in high yield the anhydroazasugar derivative **4**, whose 1 H NMR data showed no signal for NH; the resonance of HC= was a singlet. The chem-

ical shifts of the signals of H-5a, H-5b, C-1, C-5 and =CH showed, with respect to the same signals for 2 and 3, the described changes¹⁰ by the formation of the aza-bridge.

Reaction of 4 with ethanethiol, 1-butanethiol, 1,4butanedithiol, and 4-methoxythiophenol in the presence of PTSA, in DMF (S_N2 conditions) yielded the corresponding alkyls 5-7 or 4-methoxyphenyl 8 azasugar thioglycoside as only the $\beta(2S)$ anomer. In the case of 1,4-butanedithiol the monopiperidinyl derivative 7 was the only product isolated. The chemical shift for the resonances of H-2 and C-2 in 5-8 (Table 1) was in agreement with the presence of the sulfur atom. The resonance of C-2 undergoes an upfield shift of roughly 23 ppm with respect to that for the same atom (C-1) in 4. The piperidine structure was also evident from the chemical shifts for the resonances of H-6a, H-6b and C-6, indicative of an N-CH₂ group, and from the strong changes in the ${}^{3}J_{H,H}$ values (see Experimental) of the piperidine ring with respect to those for the furanoid ring. Double-pulsed field gradient spin-echo (DPFGSE) NOE²⁹ experiments were used to assess the configuration of C-2 on 5 and 8. The NOEs observed for the C-6 methylene protons of both compounds allowed the assignment of such diastereotopic hydrogens (H-6a

HO

O

O

O

NHP

$$i \rightarrow 2$$
 $i \rightarrow 3$
 $i \rightarrow 2$
 $i \rightarrow 3$
 $i \rightarrow 3$
 $i \rightarrow 2$
 $i \rightarrow 3$
 i

Scheme 1. Reagents and conditions. (i) ClMs/Py, 15 min (70%); (ii) ClMs/Py, 72 h (70%); (iii) NaMeO/DMF, rt, 20 mmHg, 15 h 91% (from 2), 91% (from 3); (iv) RSH/DMF, PTSA.

Table 1. Selected NMR spectroscopic data (δ , ppm; J Hz) for compounds 2–8 and 10–13 at 500 (1 H) and 125 (13 C)MHz

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					* * * * * * * * * * * * * * * * * * * *				
	Sugar ring					Enamino moiety				C=S
	δH-1	δH-5a	δ H-5b	δC-1	δC-5	δ NH	$\delta = CH$	$J_{ m NH,=CH}$	$\delta = CH$	
2	5.14	4.46	4.20	96.7	69.1	9.51	7.99	13.3	157.6	_
3	5.15	3.66	3.61	95.1	44.8	9.48	8.04	13.3	157.4	_
4	5.22	3.03	2.89	92.4	48.0	_	7.60	_	146.8	_
	δ H-2	δ H-6a	δ H-6b	δ C-2	δ C-6					
5 ^a	4.62	3.49	3.05	68.9	46.2	_	7.48	_	150.0	_
6 ^a	4.63	3.50	3.08	68.9	46.1	_	7.44	_	149.7	_
7 ^a	4.62	3.51	3.06	69.0	46.1	_	7.43	_	149.7	_
8 ^a	4.69	3.49	3.13	73.9	45.9	_	7.41	_	149.6	_
	δ H-1	δ H-5a	δ H-5b	δ C-1	δ C-5					
10	5.39	3.64	3.64	90.3	45.6	9.48	8.04	13.1	157.2	
11	5.39	3.60	3.49	89.7	53.3	9.51	8.07	13.1	157.2	_
12	5.30	2.89	2.78	88.6	43.1	9.50	8.07	13.1	157.1	
13	5.33	3.80	3.70	89.6	47.6	9.54	8.07	13.2	157.2	135.2

^a The data for the same atom are maintained in each column although in compounds 5–8, the numbering changes.

pro-R and H-6b pro-S). Particularly important was the presence of a long-range NOE effect between H-6b and the *endo* methyl group of the isopropylidene moiety, not observed for H-6a. With the stereospecific assignment of these prochiral protons already done, the NOE interaction between H-6a and the protons at vicinal positions to the sulfur atom in the aglycon (CH₂ for 5 and aromatics for 8), absent in the case of H-6b, clearly supports (S)-configuration for C-2. The formation of 5–7 is stereoselective, and only the β -anomers were isolated after purification in medium-to-high yield. Protonation of 4 by PTSA produces the cations 17 and 18, which are in equilibrium (Scheme 2). The aprotic solvent favours the S_N2 attack of the RSH on C-1 (D-ribose numbering) with cleavage of the C1-O bond, as the OH is a better leaving group than NH, and inversion of the configuration. This behaviour is different to that observed for related compounds, 11 which under S_N1 conditions, produce thioglycosides of 5-aminosugars, with cleavage of the C1-N bond.

Scheme 2. Mechanism of the formation of 6-8.

The D-ribofuranosylenamine α -anomer 9 was treated with mesyl chloride (Scheme 3), under the same condi-

tions described above for 3, to obtain 10, whose NMR data confirmed the structure and α -anomeric configuration. The described²³ differences in the resonances of C-1 and H-1 in the parent compounds 1 and 9 were observed in the anomers 3 and 10.

Reaction of 10 with sodium azide (\rightarrow 11), followed by hydrogenation on palladium/carbon (\rightarrow 12), and reaction with thiocarbonyldiimidazole afforded the 5-isothiocyanato ribofuranosylenamine derivative 13 in an overall quantitative yield from 10. Compound 11 had the IR absorption for the azido group at 2110 cm⁻¹ and the δ values for the resonances of H-5a, H-5b and C-5 were very close to those described for other azido derivatives of sugars in a primary position.³⁰ Signals of resonance of H-5a, H-5b and C-5 in 12 were upfield shifted with respect to the same signal for 11 as corresponds to the substitution of the azido by the amino group. The isothiocyanato group of 13 was supported²² on the basis of the IR absorption at 2112 cm⁻¹ and the ¹³C resonance at 135.2 ppm. The introduction of the NCS group in C-5 position produced an increase in the δ values for H-5a, H-5b and C-5 with respect to the same signals in the amino precursor 12. When the resonance of C-5 in 13 is compared with the same signal for the azido derivative,11 the described22 shielding of \sim 5.0 ppm was observed (Table 1).

With the aim of having building blocks to prepare dinucleoside analogues having a thiourea bridge, we have prepared (Scheme 3) the symmetric 15 and non-symmetric 16 thioureyleneglycosylenamines. Thus the reaction of amino derivative 12 with isothiocyanate 13 in DMF, under anhydrous conditions, produced thiourea

Scheme 3. Reagents and conditions. (i) MsCl/Py, 72h; (ii) NaN₃/DMF, 70°C; (iii) H₂/Pd–C/MeOH; (iv) Im₂CS/CH₂Cl₂, 0°C.

15 in high yield. In the same way, the reaction of 13 with 3'-aminothreofuranoside 14^{22} gave compound 16 having glycosylamine and nucleoside moieties. The enamino groups of 15 and 16 are potentially useful for preparing different heterocycles.^{25–27} The C=S of the thiourea spacer of 15 and 16 resonated at 183.3 ppm, as in related di-C-nucleosides²² and di- and tri-saccharides³¹ with a thioureylene group. Broad NMR signals for resonances of the CH_2 -NH groups of 15 and 16 and for H-3 and C-3 (L-threofuranose ring) of 16 also supported the presence of the thiourea group.

3. Conclusion

The nucleophilic opening of N-diethoxycarbonylvinylanhydroazasugar derivatives is a stereoselective method for preparing six-membered azasugar thioglycosides; particularly starting from β -D-ribose derivatives, 2-thioalcoxy (thioaroxy) piperidines are obtained. The reaction of 5-isothiocyanato-5-deoxy- α -D-ribofuranosylenamines with amino compounds gives access to different thioureylene derivatives, potentially useful as building blocks to prepare di-nucleosides with a non-ionic thiourea bridge.

4. Experimental

4.1. General methods

Melting points were determined with a Gallenkamp apparatus and are uncorrected. A Perkin–Elmer Model 141 MC polarimeter, 1cm tubes, and solutions in CH₂Cl₂, at 589 nm, were used for measurement of specific rotations. IR spectra were recorded for KBr discs on a Bomen Michelson MB-120 FTIR spectrophotometer. Mass spectra (EI, CI and FAB) were recorded with a Kratos MS-80RFA or a Micromass AutoSpecQ instrument with a resolution of 1000 or 60,000 (10% valley definition). For the FAB spectra, ions were produced by a beam of xenon atoms (6-7keV), using 3-nitrobenzyl alcohol or thioglycerol as matrix and NaI as salt. TLC was performed on Silica Gel HF₂₅₄, with detection by UV light or charring with H₂SO₄. Silica Gel 60 (Merck, 70–230 and 230–400 mesh) was used for preparative chromatography.

NMR experiments were recorded on a Bruker Avance 500 spectrometer (500.13 MHz for ¹H and 125.75 MHz for ¹³C). Sample concentrations were typically in the range 10–15 mg per 0.6 mL of CDCl₃. Chemical shifts are given in ppm, using the residual protonated solvent signal as reference. ¹H and ¹³C assignments were confirmed by 2D conventional COSY and HSQC experiments. 1D NOESY experiments were carried out on a 5 mm inverse detection probe operating at 303 K, by using the double-pulsed field gradient spinecho technique (DPFGSE-NOE). ²⁹ A mixing time of 400 ms, a recycle delay of 2s, and 1024 transients per spectrum, were used in all cases. Selective inversions were performed by using Gaussian-shaped soft pulses (50 ms).

4.2. Preparation of compounds 2, 3 and 10

To a cooled (0 °C) stirred solution of the 2,3-O-isopropylidene-N-(2,2-diethoxycarbonylvinyl)- β -D-ribofuranosylamine 1 or 2,3-O-isopropylidene-N-(2,2-diethoxycarbonylvinyl)- α -D-ribofuranosylamine 9 (0.278 mmol) in pyridine (ymL) under argon, a solution of mesyl chloride (0.975 mmol) was dropped. The mixture was stirred at rt for t h. The solution was poured into ice water and extracted with CH₂Cl₂, the organic layer was washed with 1 M sulfuric acid, saturated aqueous sodium hydrogen carbonate, and water, dried over MgSO₄, filtered and concentrated to dryness. The residue was purified by column chromatography (ether/hexane 2:1).

4.2.1. N-(2,2-Diethoxycarbonylvinyl)-2,3-O-isopropylidene-5-*O*-mesyl- β -D-ribofuranosylamine, 2. $y = 83.0 \,\mathrm{mL}$; t = 15h. Amorphous solid. Yield 70%; $[\alpha]^{24} = -88$ $(c 1.2, CH_2Cl_2); FABMS m/z 460 [(M+Na)^+]; IR 3306,$ 2986, 2928, 1690, 1607, 1452, 1360, 1280, 750 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.51 (dd, 1H, $J_{NH,1}$ = 9.6, $J_{\text{NH,HC}}$ = 13.3, NH), 7.99 (d, 1H, HC=), 5.14 (dd, 1H, $J_{1,2} = 2.1$, H-1), 4.83 (d, 1H, $J_{2,3} = 6.1$, H-3), 4.68 (dd, 1H, H-2), 4.46 (dd, 1H, $J_{4,5a} = 3.0$, $J_{5a,5b} = 12.8$, H-5a), 4.45 (m, 1H, H-4), 4.23–4.15 (m, 5H, H-5b, 2CH₂CH₃), 3.17 (s, 3H, Ms), 1.52, 1.33 (each s, each 3H, 2(CH₃)₂C), 1.31, 1.26 (each t, each 3H, J_{H} , = 7.1, CH₂CH₃); ¹³C NMR (125.7MHz, CDCl₃) δ 168.9, 165.3 (2C=O), 157.6 (CH=), 114.0 (C(CH₃)₂), 96.7 (C-1), 92.8 (C=), 85.7 (C-2), 83.2 (C-4), 81.5 (C-3), 69.1 (C-5), 60.1, 59.9 (2C₂CH₃), 37.6 (OMs), 26.7, 24,9 [(CH₃)₂C], 14.3, 14.2 (2CH₂C₃); Anal. Calcd for C₁₇H₂₇NO₁₀S: C, 46.68; H, 6.22; N, 3.20. Found: C, 47.04; H, 6.15; N, 3.01.

4.2.2. 5-Chloro-5-deoxy-N-(2,2-diethoxycarbonylvinyl)-2,3-O-isopropylidene-β-D-ribofuranosylamine, 1.0 mL; t = 72 h. Amorphous solid. Yield 70%; $[\alpha]^{23} = -7.5$ (c 1.0, CH₂Cl₂); FABMS m/z 400 $[(M+Na)^+]$; IR, 3257, 2991, 2948, 1697, 1652, 1611, 1451, 1402, 1381, 1225, 1098, 1022, 870, 742 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.48 (dd, 1H, $J_{NH,1}$ = 8.9, $J_{\text{NH,HC}}$ = 13.3, NH), 8.04 (d, 1H, HC=), 5.15 (dd, 1H, $J_{1,2} = 2.6$, H-1), 4.78 (dd, 1H, $J_{2,3} = 6.3$, $J_{3,4} = 2.1$, H-3), 4.69 (dd, 1H, H-2), 4.45 (m, 1H, H-4), 4.25, 4.19 (each q, each 2H, $J_{H,H} = 7.1$, 2C H_2 CH₃), 3.66 (dd, 1H, $J_{4,5a} = 3.8$, $J_{5a,5b} = 11.8$, H-5a), 3.61 (dd, 1H, $J_{4,5b} = 5.4$, H-5b), 1.62, 1.39 (each s, each 3H, $2(CH_3)_2C)$, 1.32, 1.21 (each t, each 3H, $2CH_2CH_3$); 13 C NMR (125.7 MHz, CDCl₃) δ 168.6, 165.3 (2C=O), 157.4 (CH=), 114.2 ($C(CH_3)_2$), 95.5 (C-1), 93.2 (C=), 85.4 (C-2), 84.5 (C-4), 82.3 (C-3), 60.1, 59.8 (2*CH*₂CH₃), 44.8 (C-5), 26.7, 25.0 ((*C*H₃)₂C), 14.3, 14.2 (2CH₂*CH*₃); Anal. Calcd for C₁₆H₂₄NO₇Cl: C, 50.87; H, 6.38; N, 3.71. Found: C, 51.25; H, 6.61; N, 3.57.

4.2.3. 5-Chloro-5-deoxy-*N***-(2,2-diethoxycarbonylvinyl)2,3-***O***-isopropylidene-**α**-D-ribofuranosylamine, 10.** 1.0 mL; t = 72h. Amorphous solid. Yield 60%; $[\alpha]^{24} = -53$ (c 0.7, CH₂Cl₂); FABMS m/z 400 $[(M+Na)^+]$; IR 3347, 3032, 2984, 1658, 1601, 1472, 1433, 1370, 1280, 1248, 759 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.48 (dd, 1H, $J_{NH,1} = 9.3$, $J_{NH,HC} = 13.1$, NH), 8.04 (d,

1H, HC=), 5.39 (dd, 1H, $J_{1,2}$ = 4.2, H-1), 4.83 (dd, 1H, $J_{2,3}$ = 6.3, $J_{3,4}$ = 1.4, H-3), 4.81 (dd, 1H, H-2), 4.41 (m, 1H, H-4), 4.24, 4.17 (each q, each 2H, $J_{H,H}$ = 7.1, 2C H_2 CH₃), 3.64 (m, 2H, H-5a, H-5b), 1.62, 1.38 (each s, each 3H, 2(C H_3)₂CO₂), 1.31, 1.27 (each t, each 3H, 2C H_2 C H_3); ¹³C NMR (125.7 MHz, CDCl₃) δ 167.9, 165.6 (2C=O), 157.2 (CH=), 114.4 [(CH₃)₂CO₂], 93.7 (C=), 90.3 (C-1), 82.7 (C-3), 81.5 (C-4), 79.5 (C-2), 60.0, 59.8 (2C H_2 CH₃), 45.6 (C-5), 26.0, 24.4 [(C H_3)₂CO₂], 14.3 (2C H_2 CH₃); Anal. Calcd for C₁₆H₂₄NO₇Cl: C, 50.87; H, 6.38; N, 3.71. Found: C, 51.26; H, 6.37; N, 3.78.

4.3. 1,5-Anhydro-*N*-(2,2-diethoxycarbonylvinyl)-2,3-*O*-isopropylidene-β-D-ribofuranosylamine, 4

To a stirred solution of the corresponding 5-chloro, 3, or 5-O-mesylated compound 2, (2.119 mmol) in DMF (14.0 mL) at 40 °C and 20 mmHg, sodium methoxide (114 mg, 2.119 mmol) was added. The reaction controlled by TLC (ether/hexane 4:1). After 15 min, the mixture was poured into ice water and extracted with CH₂Cl₂. The organic layer was washed with water, dried over MgSO₄, filtered and concentrated to dryness. The residue was purified by column chromatography (AcOEt/toluene 1:7) to give an amorphous solid. Yield 91% (from **2**), 92% (from **3**); $[\alpha]^{23} = 0$ (c 1.0, CH₂Cl₂); FABMS *m/z* 364 [(M+Na)⁺]; IR 3308, 2965, 2930, 1696, 1524, 1456, 1370, 1261, 802 cm⁻¹; ¹H NMR $(500 \,\mathrm{MHz}, \,\mathrm{CDCl_3}) \,\delta \,7.60 \,(\mathrm{s}\,1\mathrm{H}, \,\mathrm{HC}=), \,5.22 \,(\mathrm{br}\,\mathrm{s}, \,1\mathrm{H}, \,\mathrm{HC}=)$ H-1), 4.65 (d, 1H, $J_{4,5a} = 4.6$, H-4), 4.41 (d, 1H, $J_{2,3} = 5.4$, H-2), 4.34 (d, 1H, H-3), 4.17, 4.11 (each q, each 2H, $J_{H, H} = 7.1$, $2CH_2CH_3$), 3.03 (dd, 1H, $J_{5a,5bb} = 10.3$, H-5a), 2.89 (d, 1H, H-5b), 1.39, 1.23 (each s, each 3H, 2(CH₃)₂C), 1.25, 1.20 (each t, each 3H, 2CH₂CH₃); 13 C NMR (125.7 MHz, CDCl₃) δ 166.6, 166.4 (2C=O), 146.8 (CH=), 112.9 (C(CH₃)₂), 96.3 (C=), 92.4 (C-1), 81.3 (C-2), 80.2 (C-3), 79.3 (C-4), 60.7, 60.2 (2*C*H₂CH₃), 48.0 (C-5), 25.7, 25.1 ((CH₃)₂CO₂), 14.2, 14.1 (2CH₂CH₃); Anal. Calcd for C₁₆H₂₃NO₇: C, 56.30; H, 6.79; N, 4.10. Found: C, 55.92; H, 6.71; N, 4.29.

4.4. Preparation of compounds 5–8

To a stirred solution of the 1,4-anhydro compound 4 (0.293 mmol) in DMF (2.0 mL) over 4Å molecular sieves at rt, the corresponding 1-ethanethiol for 5, 1-butanethiol for 6, 1,4-butanedithiol for 7, and 4-methoxythiophenol for 8 (7.325 mmol) and PTSA (0.439 mmol) were added. The reaction mixture was stirred for 15 min, monitored by TLC (ether/hexane 4:1), and then neutralized with satd aq NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with water, and dried over MgSO₄, filtered and concentrated to dryness. In all cases, the residue was purified by column chromatography (CH₂Cl₂, CH₂Cl₂/MeOH 100:1).

4.4.1. (2*S*,3*R*,4*R*,5*R*)-*N*-(2,2-Diethoxycarbonylvinyl)-2-ethylthio-5-hydroxy-3,4-*O*-isopropylidenepiperidine, 5. Amorphous solid. Yield 83%; $[\alpha]_D^{28} = -46$ (*c* 0.9, CH₂Cl₂); FABMS m/z 426 $[(M+Na)^+]$; IR 3368, 2978, 2922, 1701, 1672, 1589, 1454, 1370, 1200,

885 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (s, 1H, HC=), 4.62 (m, 2H, H-2, H-5), 4.49 (dd, 1H, $J_{3,4}$ = 7.7, $J_{4,5}$ = 3.0, H-4), 4.38 (dd, 1H, $J_{2,3}$ = 1.7, H-3), 4.24, 4.14 (each q, each 2H, $J_{\rm H,H}$ = 7.0, 2C H_2 CH₃), 3.49 (dd, 1H, $J_{5,6a}$ = 6.2, $J_{6a,6b}$ = 11.9, H-6a), 3.05 (dd, 1H, $J_{5,6b}$ = 11.0, H-6b), 2.59 (m, 2H, SCH₂), 2.21 (d, 1H, $J_{5,\rm OH}$ = 9.9, OH-5), 1.43, 1.33 (each s, each 3H, 2(CH₃)₂C), 1.30, 1.25 (each t, each 3H, 2CH₂C H_3); 1.22 (m, 3H, SCH₂C H_3). ¹³C NMR (125.7 MHz, CDCl₃) δ 167.4, 167.0 (2C=O), 150.0 (CH=), 110.6 (C(CH₃)₂), 96.2 (C=), 76.2 (C-3), 72.9 (C-4), 68.9 (C-2), 63.4 (C-5), 61.1, 60.3 (2CH₂CH₃), 46.2 (C-6), 26.3, 24.6 [(CH₃)₂C], 25.7 (SCH₂), 14.5, 14.4 (2CH₂CH₃), 14.2 (SCH₂CH₃); HRCIMS m/z obsd. 403.1666 calcd. for C₁₈H₂₉NO₇S 403.1665.

4.4.2. (2S,3R,4R,5R)-2-Butylthio-N-(2,2-diethoxycarbonylvinyl)-5-hydroxy-3,4-*O*-isopropylidenepiperidine, Amorphous solid. Yield 84%; $[\alpha]_D^{24} = -56$ (c 0.9, CH₂Cl₂); FABMS m/z 454 $[(M+Na)^{+}]$; IR 3396, 2986, 2932, 2872, 1706, 1677, 1588, 1459, 1365, 1283, 880 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (s, 1H, HC=), 4.63 (m, 2H, H-2, H-5), 4.51 (dd, 1H, $J_{3.4} = 7.7$, $J_{4.5} = 3.1$, H-4), 4.40 (dd, 1H, $J_{2.3} = 1.7$, H-3), 4.26, 4.17 (each q, each 2H, $J_{H,H} = 7.0$, $2CH_2CH_3$), 3.50 (dd, 1H, $J_{5,6a} = 6.2$, $J_{6a,6b} = 11.9$, H-6a), 3.08 (dd, 1H, $J_{5,6b} = 10.2$, H-6b), 2.59 (m, 2H, SCH₂), 2.07 (d, 1H, $J_{5,OH}$ = 9.9, OH-5), 1.59 (m, 2H, SCH₂CH₂), 1.45, 1.35 (each s, each 3H, 2[(CH₃)₂C]), 1.40 (qd, 2H, $J_{\text{CH2,CH3}} = 7.4$, $J_{\text{CH2,CH2}} = 2.5$, $SCH_2CH_2CH_2CH_3$), 1.33, 1.25 (each t, each 3H, 2CH₂CH₃), 0.91 (t, 3H, SCH₂CH₂CH₂CH₃); ¹³C NMR (125.7 MHz, CDCl₃) δ 167.3, 166.8 (2C=O), 149.7 (CH=), 110.5 [C(CH₃)₂], 96.1 (C=), 76.1 (C-3), 72.7 (C-4), 68.9 (C-2), 63.3 (C-5), 60.9, 60.1 (2CH₂CH₃), 46.1 (C-6), 31.2(SCH₂CH₂), 31.1 (SCH₂), 26.2, 24.5 [(CH₃)₂C], 21.8 $(SCH_2CH_2CH_2), 14.3,$ 14.1 $(2CH_{2}CH_{3}),$ (SCH₂CH₂CH₂CH₃); Anal. Calcd for C₂₀H₃₃NO₇S: C₂₀H 55.66; H, 7.71; N, 3.25; S, 7.44. Found: C, 55.36; H, 7.68; N, 3.37; S, 7.51.

4.4.3. (2S,3R,4R,5R)-N-(2,2-Diethoxycarbonylvinyl)-5hydroxy-3,4-O-isopropylidene-2-mercaptobutylthiopiperidine, 7. Amorphous solid. Yield 77% $[\alpha]_D^{24} = -48$ $(c \ 0.7, \text{CH}_2\text{Cl}_2); \text{FABMS } m/z \ 486 \ [(\text{M}+\text{Na})^+]; \text{IR } 3302,$ 2984, 2932, 1695, 1592, 1425, 1373, 1282, 757 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (s, 1H, HC=), 4.62 (m, 2H, H-2, H-5), 4.51 (dd, 1H, $J_{3,4} = 7.5$, $J_{4,5} = 3.0$, H-4), 4.39 (dd, 1H, $J_{2,3} = 1.5$, H-3), 4.26, 4.16 (each q, each 2H, $J_{\rm H, H} = 7.5$, 2C H_2 CH₃), 3.51 (dd, 1H, $J_{5,6a} = 6.0$, $J_{6a,6b} = 12.0$, H-6a), 3.06 (dd, 1H, $J_{5,6b} = 11.0$, H-6b), 2.61 [m, 2H, SC H_2 (CH₂)₃SH], 2.53 (m, 2H, CH_2SH), 2.11 (d, 1H, $J_{5,OH} = 9.5$, OH-5), 1.74–1.68 (m, 4H, $SCH_2CH_2CH_2CH_2SH$), 1.45, 1.35 [each s, each 3H, 2(CH₃)₂C], 1.36 (s, 1H, SH), 1.32, 1.25 (each t, each 3H, 2CH₂CH₃); ¹³C NMR (125.7 MHz, CDCl₃) δ 167.2, 166.7 (2C=O), 149.7 (CH=), 110.5 [$C(CH_3)_2$], 96.3 (C=), 76.1 (C-3), 72.8 (C-4), 69.0 (C-2), 63.2 (C-5), 61.0, 60.2 (2*C*H₂CH₃), 46.1 (C-6), 32.8 (SCH₂CH₂), 30.9 (SCH₂), 27.8 (SCH₂CH₂CH₂CH₂SH), 26.1, 24.5 [(CH₃)₂C], 23.9 (CH₂SH), 14.3, 14.1 (2CH₂CH₃); HRCIMS m/z obsd. 463.1701 calcd. for $C_{20}H_{33}NO_7S_2$ 463.1698.

4.4.4. (2S,3R,4R,5R)-N-(2,2-Diethoxycarbonylvinyl)-5hydroxy-3,4-O-isopropylidene-2-(4-methoxyphenyl)thiopiperidine, **8.** Amorphous solid. Yield $[\alpha]_{D}^{24} = -141$ (c 1.1 CH₂Cl₂); FABMS m/z 504 [(M+Na)⁺]; IR 3453, 2983, 2932, 1700, 1593, 1505, 1381, 1250, 831 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (br s, 1H, HC=), 6.94–6.84 (m, 4H, Ar), 4.69 (m, 2H, H-2, H-5), 4.58 (dd, 1H, $J_{3.4} = 7.7$, $J_{4.5} = 2.8$, H-4), 4.54 (dd, 1H, $J_{2,3} = 1.0$, H-3), 4.25, 4.08 (each q, each 2H, $J_{H,H} = 7.1$, 2C H_2 CH₃), 3.79 (s, 3H, OCH₃), 3.49 (dd, 1H, $J_{5,6a} = 6.0$, $J_{6a,6b} = 11.7$, H-6a), 3.13 (dd, 1H, $J_{5,6b} = 11.2$, H-6b), 2.17 (d, 1H, $J_{5,OH} = 10.0$, OH-5), 1.42, 1.35 [each s, each 3H, 2(CH₃)₂C], 1.31, 1.19 (each t, each 3H, 2CH₂CH₃); ¹³C NMR (125.7 MHz, CDCl₃) δ 167.6, 166.7 (2C=O), 161.9–121.4 (Ar), 149.6 (CH=), 110.7 [$C(CH_3)_2$], 96.5 (C=), 75.7 (C-3), 73.9 (C-2), 72.7 (C-4), 63.8 (C-5), 61.2, 60.2 (2*C*H₂CH₃), 55.6 (OCH₃), 45.9 (C-6), 26.4, 24.8 [(CH₃)₂C], 14.5, 14.4 (2CH₂CH₃); HRCIMS m/z obsd. 481.1763 calcd. for $C_{23}H_{31}NO_8S$ 481.1770.

4.5. 5-Azido-5-deoxy-*N*-(2,2-diethoxycarbonylvinyl)-2,3-*O*-isopropylidene-α-D-ribofuranosylamine, 11

To a stirred solution of compound 10 (0.514 mmol) in DMF (20mL), sodium azide (2.569mmol) was added. The mixture was kept for 6h at 70°C, then poured into ice water and extracted with AcOEt. The combined organic layers were washed with water, dried over MgSO₄ and concentrated. The residue was purified by column chromatography (CH₂Cl₂) and gave an amorphous solid in quantitative yield. $[\alpha]_D^{23} = -74$ (c 1.0, CH₂Cl₂); FABMS m/z 407 $[(M+Na)^+]$; IR 3290, 3030, 2989, 2110, 1694, 1662, 1605, 1516, 1454, 1427, 1373, 1284, 1226, 1163, 1109, 1073, 986, 875, 752, 625 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.51 (dd, 1H, $J_{NH,1}$ = 9.2, $J_{\text{NH,HC}} = 13.1$, NH), 8.07 (d, 1H, HC=), 5.30 (dd, 1H, $J_{1,2} = 4.5$, H-1), 4.81 (t, 1H, $J_{2,3} = 6.2$, H-2), 4.73 (dd, 1H, $J_{3,4}$ = 1.7, H-3), 4.24, 4.17 (each q, each 2H, $J_{H,H} = 7.1$, $2CH_2CH_3$), 4.24 (m, 1H, H-4), 3.60 (dd, 1H, $J_{4,5a} = 3.6$, $J_{5a,5b} = 13.0$, H-5a), 3.49 (dd, 1H, $J_{4,5b} = 3.7$, H-5b), 1.64, 1.39 (each s, each 3H, 2 $(CH_3)_2CO_2$, 1.32, 1.31 (each t, each 3H, $2CH_2CH_3$); ¹³C NMR (125.7 MHz, CDCl₃) δ 167.9, 165.4 (2C=O), 157.2 (CH=), 114.5 [(CH₃)₂ CO_2], 93.6 (C=), 89.7 (C-1), 82.2 (C-4), 80.5 (C-3), 79.4 (C-2), 60.0, 59.8 $(2CH_2CH_3)$, 53.3 (C-5), 26.1, 24,8 [$(CH_3)_2CO_2$], 14.3 (2CH₂CH₃); HRCIMS m/z obsd. 384.1645 calcd. for $C_{16}H_{24}N_4O_7$ 384.1645.

4.6. 5-Amino-5-deoxy-*N*-(2,2-diethoxycarbonylvinyl)-2,3-*O*-isopropylidene-α-D-ribofuranosylamine, 12

A mixture of azide 11 (0.487 mmol) and Pd–C (18.7 mg) in MeOH (14 mL) was hydrogenated under a slightly positive pressure of hydrogen (balloon) at rt for 3h. The suspension was diluted with MeOH, filtered through Celite and concentrated to dryness. The residue, purified by column chromatography (CH₂Cl₂, MeOH 15:1) gave an amorphous solid in quantitative yield. [α]_D²⁴ = -77 (c 1.0, CH₂Cl₂); FABMS m/z 381 [(M+Na)⁺]; IR 3742, 3619, 3300, 2984, 2933, 1700, 1653, 1615, 1539, 1523, 1456, 1376, 1227, 1163, 1120,

1075, 995, 870, 747, 683 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.50 (dd, 1H, $J_{\text{NH,1}} = 8.9$, $J_{\text{NH,HC}} = 13.1$, NH), 8.07 (d, 1H, HC=), 5.20 (dd, 1H, $J_{1,2} = 4.6$, H-1), 4.77 (t, 1H, $J_{2,3} = 6.5$, H-2), 4.67 (dd, 1H, $J_{3,4} = 2.2$, H-3), 4.26 (each q, each 2H, $J_{\text{H,H}} = 7.1$, 2CH₂CH₃), 4.08 (m, 1H, H-4), 2.89 (dd, 1H, $J_{4,5a} = 4.4$, $J_{5a,5b} = 13.4$, H-5a), 2.78 (dd, 1H, $J_{4,5b} = 6.3$, H-5b), 2.16 (s, 2H, NH₂), 1.64, 1.39 (each s, each 3H, 2(CH₃)₂CO₂), 1.31, 1.30 (each t, each 3H, 2CH₂CH₃); ¹³C NMR (125.7 MHz, CDCl₃) δ 167.7, 165.6 (2C=O), 157.1 (CH=), 114.3 [(CH₃)₂CO₂], 93.1 (C=), 88.6 (C-1), 83.3 (C-4), 82.2 (C-3), 79.3 (C-2), 59.8, 59.6 (2CH₂CH₃), 43.1 (C-5), 25.9, 24,6 [(CH₃)₂CO₂], 14.1 (2CH₂CH₃); HRCIMS m/z obsd. 358.1739 calcd. for C₁₆H₂₆N₂O₇ 358.1740.

4.7. 5-Deoxy-*N*-(2,2-diethoxycarbonylvinyl)-2,3-*O*-iso-propylidene-5-isothiocianato-α-D-ribofuranosylamine, 13

To a solution of the amino compound 12 (0.274 mmol) in dichloromethane (9 mL) at 0 °C, N,N'-thiocarbonyldiimidazole (49 mg, 0.274 mmol) was added. When monitoring of the reaction by TLC (CH₂Cl₂/MeOH, 50:1) indicated that all starting material had been consumed (1h), the solvent was evaporated to dryness. The residue was purified by column chromatography to give an amorphous solid in quantitative yield $[\alpha]_D^{23} = -14$ (c 0.9, CH_2Cl_2); FABMS m/z 423 $[(M+Na)^{+}]$; IR 3387, 3385, 2982, 2934, 2112, 1706, 1665, 1601, 1442, 1382, 1215, 960, 797 cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 9.54 (dd, 1H, $J_{NH,1} = 9.0$, $J_{NH,HC} = 13.2$, NH), 8.07 (d, 1H, HC=), 5.33 (dd, 1H, $J_{1,2} = 4.6$, H-1), 4.88 (t, 1H, $J_{2,3} = 6.3$, H-2), 4.79 (dd, 1H, $J_{3,4} = 2.2$, H-3), 4.25, 4.18 (each q, each 2H, $J_{H,H}$ = 7.1, 2C H_2 CH₃), 4.23 (m, 1H, H-4), 3.80 (dd, 1H, $J_{4,5a}$ = 4.1, $J_{5a,5b}$ = 14.7, H-5a), 3.70 (dd, 1H, $J_{4.5b}$ = 3.7, H-5b), 1.65, 1.41 (each s, each 3H, $2(CH_3)_2CO_2$, 1.34, 1.30 (each t, each 3H, $2CH_2CH_3$); ¹³C NMR (125.7 MHz, CDCl₃) δ 168.0, 165.6 (2C=O), 157.2 (CH=), 135.2 (C=S), 115.1 $[(CH_3)_2CO_2]$, 94.0 (C=), 89.6 (C-1), 82.2 (C-4), 80.0 (C-3), 79.3 (C-2), 60.1, 60.0 (2*C*H₂CH₃), 47.6 (C-5), 26.1, 24.8 [(CH₃)₂CO₂], 14.4, 14.3 (2CH₂CH₃); Anal. Calcd for C₁₇H₂₄N₂O₇S: C, 50.99; H, 6.04; N, 6.99; S, 8.01. Found: C, 50.80; H, 6.03; N, 6.89; S, 7.76.

4.8. General procedure for the preparation of thioureas 15 and 16

A solution of the isothiocyanate 13 (0.144 mmol) and the amino derivative 12 for 15 and 14 for 16 (0.144 mmol) in DMF (1.5 mL) at 40 °C was stirred for 3h. When monitoring of the reaction by TLC (ether, hexane 4:1 for 15 and CH₂Cl₂, MeOH, 40:1 for 16) indicated that all starting material had been consumed, the solvent was evaporated to dryness. The residue was purified as described.

4.8.1. 1-Deoxy-(2,2-diethoxycarbonylvinylamino)-*N*,*N*'-**bis-(2,3-***O*-**isopropylidene-α-D-ribofuranos-5-yl) thiourea, 15.** Column chromatography (CH₂Cl₂, CH₂Cl₂/MeOH 60:1) gave an amorphous solid. Yield 88%. $[\alpha]_D^{24} = -69$ (*c* 1.0, CH₂Cl₂); FABMS *m/z* 781 [(M+Na)⁺]; IR 3326, 2984, 2936, 1722, 1667, 1611,

1445, 1377, 1223, 750 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) δ 9.21 (dd, 1H, $J_{NH,1} = 9.1$, $J_{NH,HC} = 13.7$, NH-CH=), 8.10 (d, 1H, HC=), 7.72 (br s, 1H, NH-C=S), 5.43 (m, 1H, H-1), 4.76–4.71 (m, 2H, H-2, H-3), 4.14–4.03 (m, 5H, H-4, 2CH₂CH₃), 3.62 (br s, 1H, H-5a), 3.45 (br s, 1H, H-5b), 1.45, 1.28 (each s, each 3H, 2(CH₃)₂CO₂), 1.20, 1.19 (each t, each 3H, ¹³C NMR $J_{H,H} = 7.0, 2CH_2CH_3$; $(125.7 \, \text{MHz},$ DMSO- d_6) δ 183.3 (C=S), 167.2, 164.9 (2C=O), 157.5 (CH=), 112.7 $[(CH_3)_2CO_2]$, 92.1 (C=), 87.8 (C-1), 81.8 (C-3), 80.0 (C-4), 78.6 (C-2), 59.3, 59.2 (2*C*H₂CH₃), 44.0 (C-5), 26.0, 24.8 [(CH₃)₂CO₂], 14.3, 14.2 (2CH₂CH₃). HRFABMS m/z obsd. 781.292992 calcd for $C_{33}H_{50}N_4O_{14}NaS$ 781.294194.

4.8.2. *N*-[2-*O*-Acetyl-1,3-dideoxy-1-(3"-acetyl-2"-methylfur-5"-yl)- α -L-threofuranos-3-yl], N'-[1-(2,2-diethoxycarbonylvinylamino-2,3-O-isopropylidene)-1-deoxy-α-D-ribofuranos-5-yll thiourea, 16. Column chromatography (CH₂Cl₂, CH₂Cl₂/MeOH 100:1) gave an amorphous solid. Yield 94%, $[\alpha]_D^{24} = -44$ (c 1.1, CH₂Cl₂); FABMS m/z 720 [(M+Na)⁺]; IR, 3321, 2978, 2938, 1723, 1610, 1544, 1459, 1386, 1227, 1075, 1022, 864, 745 cm⁻¹; 1 H NMR (500 MHz, DMSO- d_{6}) δ 9.14 (dd, 1H, $J_{NH',1} = 9.0$, $J_{NH',H'C} = 13.9$, NH'-CH' = 0, 8.05 (d, 1H, H'=), 7.92 (d, 1H, $J_{NH,3} = 6.5$, NH), 7.56 (br s, 1H, NH'), 6.62 (s, 1H, H-4"), 5.40 (dd, 1H, $J_{1'2'} = 4.0$, H-1'), 5.34 (m, 1H, H-2), 4.75-4.70 (m, 4H, H-1, H-3, H-2' H-3'), 4.19 (q, 2H, $J_{H,H} = 7.1$, CH_3CH_2''), 4.14– 4.04 (m, 6H, H-4a, H-4' 2CH₃CH'₂), 3.78 (dd, 1H, $J_{3,4b} = 4.0$, $J_{4a,4b} = 9.6$, H-4b), 3.63 (m, 1H, H-5a'), 3.47 (m, 1H, H-5b'), 2.49 (s, 3H, $=C-CH_3''$), 2.02 (s, 3H, OCOC H_3), 1.45, 1.29 (each s, each 3H, $2(CH'_3)_2CO_2$), 1.24, 1.20 (each t, each 3H, $J_{H,H} = 7.1$, ¹³C NMR $2CH_2CH_3'$); 1.18 (t, 3H, CH_2CH_3); (125.7 MHz, DMSO- d_6) δ 183.3 (C=S), $(COOCH_3)$, 167.0, 164.9 (2O=C), 162.7 (O=C'), 158.6 (C5"), 157.3 (C'=), 149.4 (C2"), 113.5 (C3"), 112.4 $[(CH_3)_2CO_2]$, 108.9 (C4"), 91.9 (C=), 87.5 (C-1'), 81.6 (C-3'), 79.8 (C-2), 79.6 (C-4'), 78.3 (C-1), 77.3 (C-2'), 70.8 (C-4), 59.7 (C3), 59.7 (C_2''), 59.1, 58.9 (2 $CH_2'CH_3$), 43.9 (C-5'), 25.7, 24.5 $[(CH_3)_2CO_2]$, 20.4 (COO CH_3), 14.1, 14.0 (2CH₂CH₃), 13.9 (CH_2CH_3), $(=C-CH_3'')$. Anal. Calcd for $C_{31}H_{43}N_3O_{13}S$: C, 53.36; H, 6.21; N, 6.02; S, 4.60. Found: C, 53.36; H, 6.07; N, 5.74; S, 4.28.

Acknowledgements

We thank the Dirección General de Enseñanza Superior e Investigación Científica of Spain and the Junta de Andalucia for financial support (grant numbers BQU2001-3740 and FQM-134), and the Ministerio de Educación Cultura y Deporte, and the Fundación Cámara of the University of Seville, for the award of fellowships to F.J.S., and J.M.I., respectively.

References

 Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515–553.

- Hartmann, T.; Witte, L. In Chemistry, Biology, and Chemoecology of the Pyrrolizidine Alkaloids; Pelletier, S. W., Ed.; Alkaloids: Chemical and Biological Perspectives; Pergamon: Oxford, 1995; Vol. 9, pp 155–233.
- 3. For a review see: Garegg, P. J. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179–205.
- Demchenko, A. V.; Pornsuriyasak, P.; De Meo, C.; Malysheva, N. N. Angew. Chem., Int. Ed. 2004, 43, 3069–3072.
- Crich, D.; Sun, S. J. Am. Chem. Soc. 1998, 120, 435– 436.
- López, J. C.; Gómez, A. M.; Uriel, C.; Fraser-Reid, B. Tetrahedron Lett. 2003, 44, 1417–1420.
- Misra, A. K.; Agnihotri, G. Carbohydr. Res. 2004, 339, 885–890.
- 8. Bozo, E.; Boros, S.; Kuszmann, J. Carbohydr. Res. 1998, 311, 191–202.
- 9. Fuentes, J.; Olano, D.; Pradera, M. A. Tetrahedron: Asymmetry 1997, 8, 3443-3456.
- Fuentes, J.; Gasch, C.; Olano, D.; Pradera, M. A.; Repetto, G.; Sayago, F. J. Tetrahedron: Asymmetry 2002, 13, 1743–1753.
- Pradera, M. A.; Sayago, F. J.; Illangua, J. M.; Angulo, M.; Gasch, C.; Fuentes, J. Tetrahedron: Asymmetry 2004, 15, 2003–2010.
- 12. Fuentes, J.; Sayago, F. J.; Illangua, J. M.; Gasch, C.; Angulo, M.; Pradera, M. A. *Tetrahedron: Asymmetry* **2004**, *15*, 603–615.
- 13. Ferrero, M.; Gotor, V. Chem. Rev. 2000, 100, 4319-4347.
- For a review on nucleoside antibiotics see: Knapp, S. Chem. Rev. 1995, 95, 1859–1876; For a review on AIDS-driven nucleoside chemistry, see: Huryn, D. M.; Okabe, M. Chem. Rev. 1992, 92, 1745–1768.
- De Mesmaeker, A.; Haener, R.; Martin, P.; Moser, H. E. Acc. Chem. Res. 1995, 28, 366–374.
- Arya, D. P.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 4384–4389.
- Linkletter, B. A.; Szabo, I. E.; Bruice, T. C. J. Am. Chem. Soc. 1999, 121, 3888–3896.
- Arya, D. P.; Bruice, T. C. J. Am. Chem. Soc. 1998, 120, 12419–12427.
- Peterson, M. A.; Nilsson, B. L.; Sarker, S.; Doboszewski,
 B.; Zhang, W.; Robins, M. J. J. Org. Chem. 1999, 64,
 8183–8192.
- Stirchak, E. P.; Summerton, J. E.; Weller, D. D. J. Org. Chem. 1987, 52, 4202–4206.
- Letsinger, R. L.; Singman, C. N.; Histand, G.; Salunkle, M. J. Am. Chem. Soc. 1988, 110, 4470–4471.
- Fuentes, J.; Angulo, M.; Pradera, M. A. J. Org. Chem. 2002, 67, 2577–2587.
- 23. Fuentes Mota, J.; Mostowicz, D.; Ortiz, C.; Pradera, M. A.; Robina, I. *Carbohydr. Res.* **1994**, *257*, 305–316.
- 24. Pradera, M. A.; Sayago, F. J.; Illangua, J. M.; Gasch, C.; Fuentes, J. *Tetrahedron Lett.* **2003**, *44*, 6605–6608.
- Bravo, F.; Díaz, Y.; Castillón, S. Tetrahedron: Asymmetry 2001, 12, 1635–1643.
- Gasch, C.; Pradera, M. A.; Salameh, B. A. B.; Molina, J. L.; Fuentes, J. Tetrahedron: Asymmetry 2000, 11, 435–452.
- 27. Fuentes, J.; Molina, J. L.; Pradera, M. A. *Tetrahedron: Asymmetry* **1998**, *9*, 2517–2532.
- Cusack, N. J.; Hildick, B. J.; Robinson, D. H.; Rugg,
 P. W.; Shaw, G. J. Chem. Soc. 1973, 161, 1720–1731.
- Stott, K.; Keeler, J.; Van, Q. N.; Shaka, A. J. J. Magn. Reson. 1997, 125, 302–324.
- Fuentes Mota, J.; Angulo, M.; Pradera, M. A. Carbohydr. Res. 1999, 319, 192–198.
- Fuentes Mota, J.; Cuevas, T.; Pradera, M. A. Carbohydr. Res. 1994, 260, 137–144.